
Module 3: Software Development 
and Design

DevNet Associate v1.0 



© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 2

3.1 Software Development



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 3

Software Development and Design 
Introduction
• The software development process is also known as the software development life cycle 

(SDLC).  

• SDLC is more than just coding and also includes gathering requirements, creating a proof of 
concept, testing, and fixing bugs.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 4

Software Development and Design 
Software Development Life Cycle (SDLC)
• SDLC is the process of developing software, starting from an idea and ending with delivery. This 

process consists of six phases. Each phase takes input from the results of the previous phase. 

• SDLC is the process of developing 
software, starting from an idea and ending 
with delivery. This process consists of six 
phases. Each phase takes input from the 
results of the previous phase.  

• Although the waterfall methods is still 
widely used today, it's gradually being 
superseded by more adaptive, flexible 
methods that produce better software, 
faster, with less pain. These methods are 
collectively known as “Agile development.”



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 5

Software Development and Design 
Requirements and Analysis Phase
▪ The requirements and analysis phase involves exploring the stakeholders' current situation, needs and 

constraints, present infrastructure, and so on, and determining the problem to be solved by the software. 
▪ After gathering the requirements, the team analyzes the results to determine the following: 

• Is it possible to develop the software according to these requirements, and can it be done on-budget? 
• Are there any risks to the development schedule, and if so, what are they? 
• How will the software be tested? 
• When and how will the software be delivered? 

▪ At the conclusion of this phase, the classic waterfall method suggests creating a Software Requirement 
Specification (SRS) document, which states the software requirements and scope, and confirms this 
meticulously with stakeholders.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 6

Software Development and Design 
Design and Implementation Phases

Design 
• During the Design phase, the software 

architects and developers design the 
software based on the provided SRS. 

• At the end of the phase, the team 
creates High-Level Design (HLD) and 
Low-Level Design (LLD) documents.

Implementation 
• The implementation phase is also 

called the coding or development 
phase. 

• As all the components and modules 
are built during this phase, it is the 
longest phase of the life cycle. 

• At the end of the phase, the 
functional code that implements all 
customer's requirements is ready to 
be tested. 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 7

Software Development and Design 
Testing, Deployment, and Maintenance Phases

Testing 
• In this phase, code is installed 

in the test environment 
• Functional testing, integration 

testing, performance testing and 
security testing is performed. 

• Testing continues until all the 
codes are bug free and pass all 
the tests. At the end of this 
phase, a high quality, bug-free, 
working piece of software is 
ready for production.

Deployment 
• During this phase, the 

software is installed into the 
production environment. 

• At the end of the phase, the 
product manager releases 
the final piece of software to 
end users.

Maintenance 
• During the maintenance 

phase, the team: 
• Provides support to 

customers 
• Fixes bugs found in 

production 
• Works on software 

improvements 
• Gathers new requests 

from the customer 
• At the end, the team works on 

the next iteration and version 
of the software. 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 8

Software Development and Design 
Software Development Methodologies
• A software development methodology is also known as Software Development Life Cycle 

model. 
• The three most popular methodologies are: 

• Waterfall 
• Agile 
• Lean 

• The type of methodology to be used depends on the: 
• Type of the project 

• Length of the project 

• Size of the team.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 9

Software Development and Design 
Waterfall Software Development
• The original waterfall model was created by Winston W. Royce. 
• His original model consisted of seven phases:



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 10

Software Development and Design 
Agile Software Development
• Agile method is flexible and customer-focused. 
• A group of 17 software developers came up with the Manifesto for Agile Software Development, also known as 

the Agile Manifesto, in 2001. According to the Agile Manifesto, the values of Agile are: 
• Individuals and interactions over processes and tools 
• Working software over comprehensive documentation 
• Customer collaboration over contract negotiation 
• Responding to change over following a plan 

• The Agile manifesto lists 12 different principles:

Agile Manifesto Principles

Customer focus Collaboration Working software Simplicity

Embrace change and adapt Motivated teams Work at a sustainable 
pace

Self-organizing teams

Frequent delivery of working software Face-to-face 
conversations

Agile environment Continuous 
Improvement



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 11

Software Development and Design  
Agile Methods
• The popular Agile methods are: 

• Agile Scrum: The Scrum focuses on small, self-organizing teams that meet daily for short 
periods and work in iterative sprints. 

• Lean: The Lean method emphasizes on elimination of wasted effort in planning and 
execution, and reduction of programmer cognitive load. 

• Extreme Programming (XP): XP deliberately addresses the specific kinds of quality-of-life 
issues faced by the software development teams. 

• Feature-Driven Development (FDD): FDD prescribes that software development should 
proceed in terms of an overall model, broken out, planned, designed, and built feature-by-
feature.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 12

Software Development and Design 
Agile Methods (Contd.)
• Sprints 

• A sprint is a specific period of time, usually between 2-4 weeks, during which, each team takes on 
as many tasks (also known as user stories) as they feel they can accomplish. When the sprint is 
over, the software should be working and deliverable. 

• The duration of the sprint is determined before the process begins and should rarely change. 

• Backlog 
• The backlog consists of all the features of the software, in a prioritized list.  

• User stories 
• A user story is a simple statement of what a user (or a role) needs, and why. Each user story 

should be small enough that a single team can finish it within a single sprint. 
• The suggested template for a user story is: 

  As a <user|role>, I would like to <action>, so that <value|benefit>



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 13

Software Development and Design 
Agile Methods (Contd.)
Scrum Teams 
• Scrum teams are cross-functional, collaborative, self-managed and self-empowered. 

• The scrum teams should not be larger than 10 individuals. 

• The scrum master should have a daily stand-up meeting with the team at a fixed time 
everyday for not more than 15 minutes. 

• The goal is to go over important tasks that have been finished, are in progress, or are about to 
be started.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 14

Software Development and Design 
Lean Software Development
• Lean software development is based on Lean Manufacturing principles, which are focused on 

minimizing waste and maximizing value to the customer. 

• The seven principles of lean, given in the book “Lean Software Development: An Agile 
Toolkit,” are as follows: 

• Eliminate waste 

• Amplify learning 

• Decide as late as possible 

• Deliver as fast as possible 

• Empower the team 

• Build integrity in 

• Optimize the whole



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 15

Software Development and Design 
Lean Software Development (Contd.)
Eliminate waste  
• It is the most fundamental lean principle. 
• There are seven wastes of software development: 

• Partially done work 

• Extra processes 

• Extra features 

• Task switching 

• Waiting  
• Motion 
• Defects



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 16

Software Development and Design 
Lean Software Development (Contd.)
Amplify Learning with Short Sprints  
• To be able to fine tune a software, there should be frequent short iterations of working software. This 

enables the following:  
• Developers learn faster 
• Customers can give feedback sooner 
• Features can be adjusted so that they bring customers more value 

Decide as Late as Possible 
• When there is uncertainty, it is best to delay the decision-making until as late as possible in the process. 

This is because it is better to base decisions on facts rather than opinions or speculations.  
Deliver as Fast as Possible

Deliver As Fast as Possible

Enables customers to provide feedback Doesn't allow customers to change their mind

Enables developers to amplify learning Makes everyone take decisions faster

Provides customers the required features Produces less waste



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 17

Software Development and Design 
Lean Software Development (Contd.)

Empower the Team  
• Each person must be allowed to make decisions in the area of their own expertise.   
Build Integrity In  
• Integrity for the software is when the software addresses the customer’s needs as well as maintains the 

usefulness for the customer.   
Optimize the Whole   
• The software must be built cohesively. The value of the software will suffer if each expert only focuses on 

their expertise and doesn't consider the ramifications of their decisions on the rest of the software.  



© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 18

3.2 Software Design Patterns



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 19

Software Design Patterns  
Introduction
• Software design patterns are best practice solutions for solving common problems in software 

development. 

• Design patterns are language-independent. 

• In 1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (known as the Gang of Four 
(GoF)) published a book called Design Patterns - Elements of Reusable Object-Oriented Software. Patterns 
identified are: 

• Program to an interface, not an implementation. 

• Favor object composition over class inheritance. 

• Software design patterns have already been proven to be successful, so using them can speed up 
development.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 20

Software Design Patterns  
The Original Design Patterns
• The Gang of Four divided patterns into three main categories: 

• Creational 

• Structural 

• Behavioral 

• They listed 23 design patterns. 

• Two of the most commonly used design patterns are:  

• The Observer design pattern (a Behavioral design pattern) 

• The Model-View-Controller (MVC)



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 21

Software Design Patterns  
Observer Design Pattern
• The observer design pattern is a subscription 

notification design that lets objects receive events when 
there are changes to an object they are observing. 

• To implement this subscription mechanism: 
• The subject must have the ability to store  

a list of all of its observers. 
• The subject must have methods to add and 

 remove observers. 

• The benefit of the observer design pattern is 
that observers can get real time data from the subject 
when a change occurs.  

• Subscription mechanisms always provide 
better performance than other options, 
such as polling.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 22

Software Design Patterns  
Model-View-Controller (MVC)
• The Model-View-Controller (MVC) design pattern aims to  

simplify development of applications that depend on graphic user interfaces. 

• MVC abstracts code and responsibility into three different  
components:  

• Model: The model is the application's data structure 
and is responsible for managing the data, logic and 
rules of the application. It gets input from the controller. 

• View: The view is the visual representation of the data.  

• Controller: The controller is the middleman between the model and view. It 
takes in user input and manipulates it to fit the format for the model or view. 

• The benefit of MVC is that each component can be built in parallel.



© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 23

3.3 Version Control Systems



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 24

Version Control Systems  
Types of Version Control Systems

• Version control, also called version control systems, revision control or source control, is a 
way to manage changes to a set of files in order to keep a history of those changes. 

• Benefits of version control are: 
• Enables collaboration 

• Accountability and visibility 

• Work in isolation 

• Safety 

• Work anywhere 
• There are three types of version control systems: 

• Local 
• Centralized 

• Distributed



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 25

Version Control Systems  
Types of Version Control Systems (Contd.)

Local Version Control System (LVCS)  

• LVCS uses a simple database to keep 
track of all of the changes to the file. 

• In most cases, the system stores the 
delta  
between the two versions of the file. 

• When the user wants to revert to the file, 
the delta is reversed to get to the 
requested version.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 26

Version Control Systems  
Types of Version Control Systems (Contd.)
Centralized Version Control System (CVCS) 
• CVCS uses a server-client model. 
• The repository is  stored in a centralized 

location, on a server. 
• In CVCS, only one individual can work on 

a  
particular file at a time. 

• An individual must check out the file to 
lock it and make the required changes 
and check in once done.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 27

Version Control Systems  
Types of Version Control Systems (Contd.)
Distributed Version Control System (DVCS) 
• DVCS is a peer-to-peer model. 
• The repository can be stored on a client 

system, but it is usually stored in a repository 
hosting service. 

• In DVCS, every individual can work on any 
file, at the same time, because the local file 
in the working copy is being modified. Hence, 
locking is not required. 

• When the individual has made the changes, 
they push the file to the main repository that 
is in the repository hosting service, and the 
version control system detects any conflicts 
between file changes.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 28

Version Control Systems  
 Git
• Git is an open source implementation of a distributed version control system that is currently the latest 

trend in software development.  
• A Git client must be installed on a client machine. It is available for MacOS, Windows, and Linux/Unix. 
• One key difference between Git and other version control systems is that Git stores data as snapshots 

instead of differences (the delta between the current file and the previous version). 

• If the file does not change, Git uses a reference link to the last snapshot in the system instead of taking 
a new and identical snapshot.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 29

Version Control Systems  
Git (Contd.)

• Git is organized by 3s- three stages and three 
states. 

• The three stages are: 
• Repository (the .git directory) 

• Working directory 

• Staging area 

• The three states are: 
• Committed 
• Modified 
• Staged



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 30

Version Control Systems  
Local vs. Remote Repositories
• Git has two types of repositories: local and remote. 

• A local repository is stored on the file system of a client machine, which is the same one on which 
the git commands are being executed. 

• A remote repository is stored somewhere other than the client machine, usually a server or 
repository hosting service.  

• A remote repository with Git continues to be a DVCS because the remote repository will contain 
the full repository, which includes the code and the file history.  

• When a client machine clones the repository, it gets the full repository without requiring to lock it, 
as in a CVCS. 

• After the local repository is cloned from the remote repository or the remote repository is created 
from the local repository, the two repositories are independent of each other until the content 
changes are applied to the other branch through a manual Git command execution.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 31

Version Control Systems  
What is Branching?

• Branching enables users to work on code independently without affecting the main code in the 
repository. When a repository is created, the code is automatically put on a branch called Master. 

• Branches can be local or remote, and they can be deleted 
and have their own history, staging area, and working 
directory. 

• Git's branch creation is lightweight, and switching between 
branches is almost instantaneous. 

• When a user goes from one branch to another, the code in 
their working directory and the files in the staging area 
change accordingly, but the repository (.git) directories 
remain unchanged. 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 32

Version Control Systems  
GitHub and Other Providers
• Git and GitHub are not the same. 
• While Git is an implementation of distributed version control and provides a command line 

interface, GitHub is a service provided by Microsoft that implements a repository hosting 
service with Git. 

• In addition to providing the distributed version control and source code management 
functionality of Git, GitHub provides additional features such as: 

• code review 

• documentation 

• project management 

• bug tracking 

• feature requests 

• GitHub introduced the concept of the ‘pull request’, which is a way of formalizing a request by 
a contributor to review changes such as new code, edits to existing code, etc., in the 
contributor's branch for inclusion in the project's main or other curated branches.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 33

Version Control Systems  
Git Commands
Setting up Git 

• To configure Git, use the --global option to set the initial 
global settings. 

  Command: git config --global key value 
Create a New Git Repository 
• Git provides a git init command to create an empty Git 

repository, or make an existing folder a Git repository. 
• When a new or existing project becomes a Git  

repository, a hidden .git directory is created in 
that project folder. 

• The .git directory is the repository that holds the  
metadata such as the compressed files, the commit 
history, and the staging area. In addition, Git also creates 
the master branch.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 34

Version Control Systems  
Git Commands (Contd.)
Command: git init 
• To make a new or existing project a Git repository, use the following command: 

     $ git init <project directory> 
where the <project directory> is the absolute or relative path to the new or existing project.  

• For a new Git repository, the directory in the provided path will be created first, followed by the creation of the 
.git directory. 

Get an Existing Git Repository 
• Command: git clone <repository> [target 

directory] 

where <repository> is the location of the 
repository to clone. 

• Git supports four major transport protocols  
for accessing the <repository>: Local,  
Secure Shell (SSH), Git, and HTTP.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 35

Version Control Systems  
Git Commands (Contd.)

  View the Modified Files in the Working Directory 
• Git provides a git status command to get a list of files that have differences between the 

working directory and the parent branch. 

• Command: git status 

Compare Changes Between Files 
• Git provides a git diff command that is essentially a generic file comparison tool. 
• Command: git diff 

• When using the git diff command, the file does not need to be a Git tracked file.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 36

Version Control Systems  
Adding and Removing Files
Adding Files to the Staging Area 
• Command: git add 
• This command can be used more than once before the 

Git repository is updated (using commit). 
• Only the files specified in the git command can be                                                           

added to the staging area 
• To add a single file to the staging area: 

    $ git add <file path> 

• To add multiple files to the staging area, where the <file 
path> is the absolute or relative path of the file to be 
added to the staging area. 
    $ git add <file path 1> ... <file path n> 

• To add all the changed files to the staging area: $ git add. 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 37

Version Control Systems  
Adding and Removing Files (Contd.)
Removing Files from the Git Repository 
• There are two ways to remove files from the Git  

repository. 
• Option 1: git rm command is used to remove files 

from the Git repository and add to the staging area. 
• Command: git rm 
• To remove the specified file(s) from the working 

directory and add the change to the staging area, 
use the following command: 
$ git rm <file path 1> ... <file path n> 
  
where <file path> is the absolute or relative path of 
the file to be deleted from the Git repository.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 38

Version Control Systems  
Adding and Removing Files (Contd.)
• To add the specified file(s) to be removed from the staging area without removing the file(s) 

itself from the working directory, use the following command: 
$ git rm --cached <file path 1> ... <file path n> 

  The git rm command will not work if the file is already in the staging area with changes. 

• Option 2: This option is a two-step process. First use the regular filesystem command to 
remove the file(s) and then add the file to the stage using the Git command. 

$ rm <file path 1> ... <file path n>  
$ git add <file path 1> ... <file path n> 

This two step process is equivalent to using the git rm <file path 1> ... <file path n> command. 
Using this option does not allow the file to be preserved in the working directory.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 39

Version Control Systems  
Updating Repositories
 Updating the Local Repository with the 
Changes in the Staging Area 

 Command: git commit 
• This command combines all the content 

changes in the staging area into a single 
commit and updates the local Git repository. 

• To commit the changes from the staging 
area, use the following command: 
$ git commit 
  

• To commit the changes from the staging 
area with a  
message, use the following command: 
  $ git commit -m "<message>"



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 40

Version Control Systems  
Updating Repositories (Contd.)
Updating the Remote Repository 

Command: git push 

• This command will not execute successfully if 
there is a conflict with adding the changes from 
the local Git repository to the remote Git 
repository. 

• To update the contents from the local repository 
to  
a particular branch in the remote repository, use 
the following command: 

 $ git push origin <branch name> 

• To update the contents from the local repository 
to the  master branch of the remote repository, 
use the command: $ git push origin master



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 41

Version Control Systems  
Updating Repositories (Contd.)
Updating Your Local Copy of the Repository 
• Local copies of the Git repository do not automatically get updated when another contributor 

makes an update to the remote Git repository.  
• Updating the local copy of the repository is a manual step. 
Command: git pull 
• When executing the command, the following steps occur: 

• The local repository ( .git directory) is updated with the latest commit, file history, and so on 
from the remote Git repository. 

• The working directory and branch is updated with the latest content from step 1. 
• A single commit is created on the local branch with the changes from step 1. 
• The working directory is updated with the latest content.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 42

Version Control Systems  
Updating Repositories (Contd.)
• To update the local copy of the Git 

repository from the parent branch, use 
the following command: 

    $ git pull 
 Or 
  $ git pull origin 

• To update the local copy of the Git 
repository from a specific branch, use 
the following command: 

    $ git pull origin <branch>



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 43

Version Control Systems  
Branching Features
Creating and Deleting a Branch 
Option 1: git branch command to list, create, or delete a branch.  
$ git branch <parent branch> <branch name> 
Option 2: git checkout command to switch branches by updating the working directory with the contents of 
the branch. 

    $ git checkout -b <parent branch> <branch name> 
Deleting a Branch 
• To delete a branch, use the following command: 

 $ git branch -d <branch name> 
Get a List of all Branches 
• To get a list of all the local branches, use the following command: 

$ git branch   Or $ git branch --list



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 44

Version Control Systems  
Branching Features (Contd.)
Merging Branches 
• Branches diverge from one 

another when they are modified 
after they are created. 

• When Git merges the branch, it 
takes the changes/commits from 
the source branch and applies it 
to the target branch.  

• During a merge, only the target 
branch is modified.  

• The source branch is untouched 
and remains the same. 
 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 45

Version Control Systems  
Branching Features (Contd.)
Fast-Forward Merge 
• A fast-forward merge is when the Git algorithm is able to apply the changes/commits from the 

source branch(es) to the target branch automatically and without any conflicts. 

Merge Conflicts 
• A merge conflict is when Git is not able to perform a fast-forward merge because it does not 

know how to automatically apply the changes from the branches together for the file(s).



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 46

Version Control Systems  
Branching Features (Contd.)
Performing the Merge 
• Git provides a git merge command to join two or more branches together. 
• Command: git merge 

• To merge a branch into the client's current branch/repository, use the below command: 
$ git merge <branch name> 

• To merge a branch into a branch that is not the client's current branch/repository, use the 
following command: 

      $ git checkout <target branch name>  
      $ git merge <source branch name> 
• To merge more than one branch into the client's current branch/repository, use the below 

command: 
$ git merge <branch name 1>...<branch name n>



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 47

Version Control Systems  
.diff Files
What is a .diff file? 
• A .diff file is used to show how two different versions of a file have changed. 
• By using specific symbols, this file can be read by other systems to interpret how files can be 

updated.  
• The symbols and meanings in a unified diff file are:

Symbol Meaning

+ Indicates that the line has been added.

- Indicates that the line has been removed.

/dev/null Shows that a file has been added or removed.

or "blank" Gives context lines around changed lines.

@@ A visual indicator that the next block of information is starting. Within the changes for one 
file, there may be multiple.

index Displays the commits compared.



© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 48

3.4 Coding Basics



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 49

Coding Basics  
Methods, Functions, Modules, and Classes
• As the project size and complexity grows, and other developers (and stakeholders) get 

involved, disciplined methods and best practices are needed to help developers write better 
code and collaborate around it more easily. 

• What is a clean code?



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 50

Coding Basics  
Clean Code
• Clean codes are the result of developers trying to make their code easy to read and understand 

for other developers.  
• They follow some common principles related to formatting, organization, intuitiveness of 

components, purpose and reusability. 
• Clean codes emphasize on standardization, proper organization, modularity, providing inline 

comments and other characteristics that help make code self-documenting. 

Reasons why developers want to write clean code 
• Clean code is easier to understand, more compact, and better-organized. 
• Clean code, being modular, tends to be easier to test using automated methods such as unit 

testing frameworks. 
• Clean code, being standardized, is easier to scan and check using automated tools. 
• It simply looks nicer.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 51

Coding Basics  
Methods and Functions
• Methods and Functions are blocks of code that perform tasks when executed. 
• Following are some standard best-practices for determining whether a piece of code should be 

encapsulated (in a method or function): 
• Code that performs a discrete task, even if it happens only once, may be a candidate for 

encapsulation.  
• Task code that is used more than once should probably be encapsulated. 

• Methods and Functions can be written once and executed as many times as required. 
• If used correctly, methods and functions will simplify the code, and reduce the potential for bugs. 
• Syntax of a Function in Python:



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 52

Coding Basics  
Methods and Functions (Contd.)
Arguments and Parameters 
• Arguments and parameters add flexibility to methods and functions. 
• Syntax of a function using arguments and parameters in Python:



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 53

Coding Basics  
Methods and Functions (Contd.)
Return Statements 
• The return statement refers to the return value that is specified using the keyword return followed by a 

variable or expression. A return statement ends the execution of a function, and returns control to the 
calling function.  

• When a return statement is executed, the value of the return statement is returned and any code below it 
gets skipped. 

• Syntax of a function with a return statement in Python:



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 54

Coding Basics  
Methods and Functions (Contd.)
Methods vs. Functions

Methods Functions

Methods are code blocks associated with an 
object, typically for object-oriented 
programming.

Functions are standalone code blocks. 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 55

Coding Basics  
Modules
• Developers typically use modules to divide a large project into smaller parts so that the code can be read 

and understood easily.  

• They consists of a set of functions and typically contains an interface for other modules to integrate with.  

• A module is packaged as a single file and is expected to work independently.  

• Below is a module with a set of functions saved in a script called circleClass.py.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 56

Coding Basics  
Classes
• In most Object-Orient Programming (OOP) languages, and in Python, classes are a means of bundling data 

and functionality. Each class declaration defines a new object type. 
• Classes may have class variables and object variables. 
• New classes may be defined, based on existing, previously defined classes, so that they inherit the 

properties, data members, and functionality (methods). 
• A class may be instantiated (created) multiple times, and each with its own object-specific data attribute 

values.

Note: Unlike other OOP languages, in Python, there is no means of creating 'private' class variables or 
internal methods. However, by convention, methods and variables with a single preceding underscore 
( _ ) are considered private and not to be used or referenced outside the class.



© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 57

3.5 Code Review and Testing



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 58

Code Review and Testing  
What is a Code Review and Why Should You Do This?
• A code review is when developers look over the codebase, a subset of code, or specific code changes and 

provide feedback. These developers are often called reviewers.  
• The code review process only happens after the code changes are complete and tested. 
• The goal of code reviews is to make sure that the final code: 

• Is easy to read 
• Is easy to understand 
• Follows coding best practices 
• Uses correct formatting 
• Is free of bugs 
• Has proper comments and documentation 
• Is clean



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 59

Code Review and Testing  
Types of Code Reviews
The most common types of code review processes include: 
• Formal code review: Developers have a series of 

meetings to review the whole codebase.  
• Change-based code review: Also known as a tool-

assisted code review, reviews code that was changed 
as a result of a bug, user story, feature, commit, and so 
on. 

• Over-the-shoulder code review: A reviewer looks 
over the shoulder of the developer who wrote the code 
and provides feedback.  

• Email pass-around: It can occur following the 
automatic emails sent by the source code management 
systems when a checkin is made. 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 60

Code Review and Testing  
Testing
•  Software testing is classically subdivided into two general categories: 

• Functional testing seeks to determine whether the software works correctly. Does it 
behave as intended in a logical sense, from the lowest levels of detail examined with Unit 
Testing, to higher levels of complexity explored in Integration Testing? 

• Non-functional testing examines usability, performance, security, resiliency, compliance, 
localization, and many other issues. This type of testing finds out if the software is fit for its 
purpose, provides the intended value, and minimizes risk. 

• Developers capture design requirements as tests and then write software to pass those tests. 
This is called Test-Driven Development (TDD).



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 61

Code Review and Testing  
Unit Testing
• Detailed functional testing of small pieces of code (lines, blocks, functions, classes, and other components in 

isolation) is called Unit Testing.  
• These test frameworks are software that allows you to make assertions about testable conditions and 

determine if these assertions are valid at a point in execution.  
• Examples of test frameworks for Python:

PyTest unittest

• PyTest is handy. It automatically executes any 
scripts that start with test_ or end with _test.py and 
within those scripts, automatically executes any 
functions beginning with 'test_' or 'tests_'.  

• We can unit test a piece of code by copying it into a 
file, importing pytest, adding appropriately-named 
testing functions, saving the file under a filename 
that also begins with 'tests_,' and running it with 
PyTest.

• The unittest framework demands a different syntax 
than PyTest.  

• For unittest, you need to subclass the built-in 
TestCase class and test by overriding its built-in 
methods or adding new methods whose names 
begin with 'test_'.  

•



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 62

Code Review and Testing  
Integration Testing
• Integration testing ensures that 

all the individual units fit 
together properly to make a 
complete application. 

• Running the code with PyTest 
produces an output as shown in 
the image:

Note: You can run this script 
on your VM using pytest. 
However, understanding the 
output and fixing any errors 
is beyond the scope of this 
course.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 63

Code Review and Testing  
Test-Driven Development (TDD)
• If you want to test to validate the application design in light of requirements, implies that you 

should write the testing code before you write the application code .  
• Having expressed  the requirements in your testing code, you can then write the application 

code until it passes the tests that you have created in the testing code. 
• The basic pattern of TDD is a five-step, repeating process: 

• Create a new test. 

• Run tests to see if any fail for unexpected reasons. 

• Write application code to pass the new test. 

• Run tests to see if any fail.  
• Refactor and improve application code.



© 2016  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 64

3.6 Understanding Data Formats



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 65

Understanding Data Formats  
Data Formats
• Rest APIs let you exchange information with remote services and equipment. 
• The three most popular standard formats for exchanging information with remote APIs are 

XML, JSON, and YAML. 
• Parsing XML, JSON, or YAML is a frequent requirement of interacting with APIs. An oft-

encountered pattern in REST API implementations is as follows: 
• Authenticate, usually by POSTing a user/password combination and retrieving an expiring 

token for use in authenticating subsequent requests. 
• Execute a GET request to a given endpoint (authenticating as required) to retrieve the 

state of a resource, requesting XML, JSON, or YAML as the output format. 
• Modify the returned XML, JSON, or YAML. 
• Execute a POST (or PUT) to the same endpoint (again, authenticating as required) to 

change the state of the resource, again requesting XML, JSON, or YAML as the output 
format and interpreting it as needed to determine if the operation was successful.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 66

Understanding Data Formats  
XML
• Extensible Markup Language (XML) is a generic methodology for wrapping textual data in 

symmetrical tags to indicate semantics.  
• It is a derivative of Structured, Generalized Markup Language (SGML), and also the parent of 

HyperText Markup Language (HTML). XML filenames typically end in ".xml". 
An Example XML Document



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 67

Understanding Data Formats  
XML (Contd.)
• XML Document Body: Except the first two lines of a XML document, the remainder of the 

document is considered as the body. 
• User-Defined Tag Names: XML tag names are user-defined. If you are composing XML for your 

own application, pick tag names that clearly express the meaning of data elements, their 
relationships, and hierarchy. 

• Special Character Encoding: Data is conveyed in XML as readable text.  
• XML Prologue: The XML prologue is the first line in an XML file. 
• Comments in XML: XML files can include comments, using the same commenting convention 

used in HTML documents. 
• XML Attributes: XML lets you embed attributes within tags to convey additional information.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 68

Understanding Data Formats  
XML (Contd.)
• XML Namespaces:  

• Namespaces are defined by the IETF and other internet authorities, organizations, and 
other entities, and their schemas are typically hosted as public documents on the web.  

• Namespaces are identified by Uniform Resource Names (URIs) to make persistent 
documents reachable without the seeker needing to be concerned about their location. 

• The code example below shows the use of a namespace, defined as the value of an 
xmlns attribute, to assert that the content of an XML remote procedure call should be 
interpreted according to the legacy NETCONF 1.0 standard.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 69

Understanding Data Formats  
XML (Contd.)
• Interpreting XML 

• In the XML Namespaces example, the structure is represented as a list or one-dimensional 
array (called 'instances') of objects (each identified as an 'instance' by bracketing tags). 
Each instance object contains two key-value pairs denoting a unique instance ID and VM 
server type.  

• A semantically-equivalent Python data structure might be declared as shown below:



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 70

Understanding Data Formats  
JSON
• JSON, or JavaScript Object Notation, is a data format derived from the way complex object 

literals are written in JavaScript. 
• JSON filenames typically end in “.json.” 
• Below is a sample JSON file, containing two values that are text strings, one is a boolean 

value, and two are arrays:



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 71

Understanding Data Formats  
JSON (Contd.)
• JSON Basic Data Types: JSON basic data types include numbers, strings, Booleans, or nulls. 
• JSON Objects: As in JavaScript, individual objects in JSON comprise of key/value pairs, which 

may be surrounded by braces, individually. 
• JSON Maps and Lists:  In this case, each individual key/value pair does not need its own set 

of brackets, but the entire object does.  JSON compound objects can be deeply-nested, with 
complex structure. It can also express JavaScript ordered arrays (or 'lists') of data or objects. 

• No Comments in JSON: Unlike XML and YAML, JSON does not support any kind of standard 
method for including unparsed comments in code. 

• Whitespace Insignificant: Whitespace in JSON is not significant, and files can be indented 
using tabs or spaces as preferred, or not at all. 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 72

Understanding Data Formats  
YAML
• YAML Ain't Markup Language (YAML) is a superset of JSON designed for even easier human 

readability. 
• As a superset of JSON, YAML parsers can generally parse JSON documents (but not vice-versa).  
• Hence, YAML is better than JSON at certain tasks, including the ability to embed JSON directly 

(including quotes) in YAML files. 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 73

Understanding Data Formats  
YAML (Contd.)
• YAML File Structure: YAML files conventionally open with three dashes ( --- alone on a line) 

and end with three dots ( ... likewise).  
• YAML Data Types: YAML basic data types include numbers, strings, Booleans, or nulls. 
• Basic Objects: In YAML, basic data types are equated to keys. 
• YAML Indentation and File Structure: YAML indicates its hierarchy using indentation. 
• Maps and Lists: YAML easily represents more complex data types, such as maps containing 

multiple key/value pairs and ordered lists. 
• Maps are generally expressed over multiple lines, beginning with a label key and a colon, 

followed by members, indented on subsequent lines:



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 74

Understanding Data Formats  
YAML (Contd.)

• Lists (arrays) are represented with optionally-indented members preceded by a single 
dash and space: 

• Maps and lists can also be represented in a so-called "flow syntax," which looks very 
much like JavaScript or Python:



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 75

Understanding Data Formats  
YAML (Contd.)
• Long Strings: They are represented using a 'folding' syntax, where linebreaks are presumed 

to be replaced by spaces when the file is parsed/consumed, or in a non-folding syntax. 



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 76

Understanding Data Formats  
YAML (Contd.)
• Comments: Comments in YAML can be inserted anywhere except in a long string literal, and 

are preceded by the hash sign and a space. 

• More YAML Features: YAML has many more features, most often encountered when using it 
in the context of specific languages, like Python, or when converting to JSON or other 
formats. For example, YAML 1.2 supports schemas and tags, which can be used to 
disambiguate interpretation of values.  
For example, to force a number to be interpreted as a string, you could use the !!str string, 
which is part of the YAML "Failsafe" schema:



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 77

Understanding Data Formats  
Parsing and Serializing
• Parsing means analyzing a message, breaking it into its component parts, and understanding 

their purposes in context. 
• Serializing is roughly the opposite of parsing. 
• Popular programming languages such as Python generally incorporate easy-to-use parsing 

functions that can accept data returned by an I/O function and produce a semantically-
equivalent internal data structure containing valid typed data.  

• On the outbound side, they contain serializers that turn internal data structures into 
semantically-equivalent messages formatted as character strings.



© 2020  Cisco and/or its affiliates. All rights reserved.   Cisco Confidential 78

Software Development and Design 
New Terms and Commands
• Software Development Life 

Cycle (SDLC) 
• User experience (UX) 
• Software Requirement 

Specification (SRS) 
• Agile Scrum 
• Lean 
• Extreme Programming (XP) 
• Feature-Driven Development 

(FDD) 
• Sprints 
• Backlog 
• User stories 
• Scrum Teams 
• Model-View-Controller (MVC)

• Centralized Version Control 
Systems (CVCS) 

• Distributed Version Control 
System (DVCS) 

• Git 
• Branching 
• GitHub 
• Arguments   
• Parameters 
• Object-Orient Programming 

(OOP) 
• Formal Code Review 
• Change-Based Code Review 
• Over-the-Shoulder Code 

Review

• Test-Driven Development (TDD) 
• Unit Testing 
• Software Development Kits 

(SDKs) 
• XML 
• JSON  
• YAML 
• Application Programming 

Interfaces (APIs) 
• REpresentational State Transfer 

(REST) 
• Long Strings 
• Parsing 
• Serializing


